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Abstract. Pseudo-symmetries were introduced by Sarlet and Cantrijn for time-dependent 
non-conservative systems. They are reconsidered here in the context of general autonomous 
second-order systems, relying on the new approach to such systems which was presented 
by Sarlet er al. We further introduce the notion of adjoint symmetries of a second-order 
system, as being associated to invariant 1-forms, and show how they may be related to 
first integrals or to Lagrangians under appropriate circumstances. Our results enable us 
to clarify a rather unusual account of Noether’s theorem which was recently given by 
Gordon. 

1. Introduction 

In a previous paper (Sarlet et al 1984), we have re-analysed the various elements 
entering the definition of a Lagrangian vector field on the tangent bundle of a differenti- 
able manifold. In doing so, we identified certain geometrical objects which are also 
of interest outside the scope of Lagrangian mechanics. In particular, we have associated 
to any second-order equation field r on TM a subset JF of 1-forms on TM. Such 
1-forms played an important role in establishing a number of results which generalise 
known properties of Lagrangian systems. Perhaps the most appealing result in that 
respect was a covering of Noether’s theorem, which also contained Cantrijn’s analogue 
of Noether’s theorem for non-conservative systems (Cantrijn 1982) as a special case. 

The class ofvector fields which, in Cantrijn’s approach, were put into correspondence 
with first integrals have been incorporated into a wider class of vector fields, called 
pseudo-symmetries, by Sarlet and Cantrijn (1984). It was further shown there that a 
pseudo-symmetry of a non-conservative system, which is not of Noether type, but 
generates point transformations, quite unexpectedly gives rise to a Lagrangian for the 
same system. It is our first goal in the present paper to reconsider and extend the 
results on pseudo-symmetries within the context of general second-order equation 
fields r and their associated 1-forms in XF. 

In particle mechanics, Noether’s theorem has always been regarded as providing 
a relationship between a subclass of symmetry vector fields of the given dynamical 
vector field and first integrals (see, e.g., Sarlet and Cantrijn 1981, Marmo er af 1985, 
ch 15). A recent account of Noether’s theorem by Gordon (1986) may look rather 
startling from this point of view, because there is no role for symmetry vector fields 
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in Gordon’s version. Instead, first integrals are generated, under appropriate circum- 
stances, through solutions of the adjoints of the linear variational equations. So, at 
best, this can be a kind of dual version of Noether’s theorem, and we wish to clarify 
this in geometrical terms. To that end, we first have to give an intrinsic meaning to 
the notion of an ‘adjoint symmetry’. Since a symmetry is a vector field which is invariant 
under the given dynamics, one may contemplate defining an adjoint symmetry as being 
an invariant l-form. This is fine for first-order systems and in fact has been formally 
introduced this way, for example, by Ten Eikelder (1984). For second-order equation 
fields r, however, we will show that it is more convenient to reserve the term ‘adjoint 
symmetry’, not for an invariant l-form, but for a related element of the set Xf. Gordon 
has rightly claimed that his version of Noether’s theorem can give rise to a first integral 
even when the given system is not of Lagrangian type. It will appear now that this is 
exactly the dual version of the way we have extended Noether’s theorem from sym- 
metries (in the Lagrangian case) to pseudo-symmetries (in the non-Lagrangian case). 
The interconnection with the first part of the paper will be complete when we establish 
that the creation of a Lagrangian by a pseudo-symmetry of point type is also related 
to a more general result on a class of adjoint symmetries. A simple example will serve 
to illustrate all these matters. 

As a final contribution of this paper, we shall introduce a geometrical notion of 
‘self-adjointness’ of a second-order equation field r and prove that r is self-adjoint if 
and only if it is locally Lagrangian. This result will have certain advantages over the 
traditional analytical one, in which a differential equation is said to be self-adjoint if 
its linear variational equations coincide with their adjoints. 

2. Preliminaries 

Let r denote a second-order equation field on TM, which for all local considerations 
will be written in the form 

(1) 

The tangent bundle TM carries a natural integrable almost tangent structure (see, e.g., 
Crampin 1983a, b), determined by the intrinsic type ( 1 , l )  tensor field 

r = ui(a/aqi)  + ~ ~ ( 4 ,  u)a/aui .  

The main properties of S are: S2  = 0, the Nijenhuis tensor of S is zero, and with respect 
to any second-order equation field we have 

Composition of type ( 1 , l )  tensor fields here is understood as composition of the linear 
maps on l-forms they determine. Properties like (3) have to be transposed when the 
tensors are regarded as maps on vector fields. 

We now recall the following definitions from Sarlet et a/  (1984): 
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Locally, elements of these subsets of 1-forms and vector fields have the following 
appearance: 

4 = aj du’+T(aj) dq’ (7) 

x = CLi(a/a4i)+r(CLi)a/aui. (8) 
A 1-form 4 E X $  is called non-degenerate if dS(4 )  is a symplectic form. The given 
vector field r is defined to be Lagrangian (locally Lagrangian) if X $  contains an 
element 4 which is exact (closed). To each vector field Y we can associate a type 
(1 , l )  tensor field Ry, defined by 

R y  = 2 r S  0 9 y S  + S 0 YLr, V I S .  (9) 

Such tensor fields have the properties [ R Y ,  SI = 0 and 2 r R y  0 S = 0, which is sufficient 
to guarantee that they preserve the sets XF and Xr. 

To end this section, we introduce projection operators for 1-forms and vector fields, 
both denoted by ry, as follows: 

(10) 
(11) 

It is straightforward to verify that these are indeed projections and that, for example, 
the following property holds true: 

TTy : X * (  T M )  +- X $ 
rr: X( T M )  +- X r  

a H a ) = 2 r (  S (  a 1) 
Y H r y (  Y) = Y + S ( 2 r  Y ) .  

R y  = R,( y )  = YrS 0 2T( y ) S .  (12) 

3. Pseudo-symmetries 

Sarlet and Cantrijn (1984) introduced pseudo-symmetries, in the context of time- 
dependent mechanics, for systems governed by a ‘conservative part’ with Lagrangian 
L and additional non-conservative forces Q. Within the present framework of 
autonomous second-order equations, such systems are characterised by the fact that 
XF contains an element of the form 

4 = d L + Q i ( q , v ) d q i .  (13) 
Because there is a marked difference between formulae ruling time-dependent dynami- 
cal systems on the odd-dimensional manifold $8 x TM and their counterparts for 
autonomous systems on the even-dimensional manifold TM, we wish to reconsider 
the concept of pseudo-symmetries here. Moreover we intend to define them for a 
general second-order equation field r, with respect to a corresponding element of X $  
which need not be of the specific form (13). 

Let 4 denote a non-degenerate element of XF. 

Dejinition. Y E  X( T M )  is a pseudo-symmetry of r with respect to 4 if 

i [~ , r ]  d S ( 4 )  = i~ d +  (14) 

It is clear from this definition that, in the case of a Lagrangian vector field (4  = dL), 
we are actually talking about symmetries of r. The left-hand side of (14) can be 
rewritten as follows: 

iy2’r dS( 4) - 2 r i y  d S ( 4 )  = i y  d 4  - 2 r i y  dS( 4)  
from which we see that Y is a pseudo-symmetry with respect to 4 if and only if 

(15) 2’riy dS( 4)  = 0. 
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Definition. Y E  5( T M )  is a pseudo-symmetry of Noether type (with respect to 4 )  if 
T y ( S ( 4 ) )  = df, for some function f, and iy(4 -d(A, 4 ) )  = O .  

Here A = S(r) = ui(a/aui)  is the so-called dilation vector field. It is straightforward to 
verify that such a Y is indeed a pseudo-symmetry, i.e. satisfies (15). In addition, we 
have i y  dS(4 )  = dF, where F =f-( Y, S ( 4 ) )  and T ( F )  = 0. In this way, we recover 
the generalisation of Noether’s theorem discussed in Sarlet et a1 (1984). 

Now let Y be a general pseudo-symmetry with respect to 4 E 5;. We know that 
Y determines a type (1, 1) tensor field RY and we may expect to gain some further 
information by looking at the new element of 5; which R y ( 4 )  provides. We have 

R Y ( ~ )  = ( 2 r S o  P,,S)(b)+S(2~r,,,(S(4))) 

= (9i-S 0 ~ Y S ) ( ~ J )  + S(hr,Y] d S ( 4 )  +dhr,y]S(4)).  

Using (14), this can be rewritten in the form 

R d 4 )  = ( 2 r S o  ~ Y S ) ( ~ ) - S ( ~ & ) + S ( ~ L ’ )  
where the function L‘ is defined by 

L’=(Y+S([ r ,  Yl), 4 ) = ( 4 Y ) ,  4)- (16) 

(zrs 0 RY ) ( 4 )  = ZY ( S ( 4 ) )  - S(dL’). 

Acting on both sides by 2’rS and using the properties (3) and (4), it follows that 

(17) 

A case of special interest is the case where the pseudo-symmetry Y is of point 
type, i.e. projects onto a vector field on M. In such a case, indeed, we have RY = 0, 
and by taking the Lie derivative of (17) with respect to r we obtain 

4 d L ’ )  = zray(s(4)) 
= z[r, VI ( S(  4 1 1 + z&r ( S ( 4 1 ) 
- d k r , ~ ] S ( d ) +  kr.v] d S ( 4 ) + 2 &  

= d(S([r,  Yl), 4 ) -  i y  d 4  + 2& 
= dL’ 

- 

which proves that dL’E 5;. We thus reach the following conclusion. 

Proposirionl. If Y is a pseudo-symmetry of point type (with respect to b ) ,  then 
L‘= ( r r (  Y), 4 )  is a Lagrangian for the given second-order system r ( L ’  need not 
necessarily be regular, however). 

This result covers the familiar property that a point symmetry of a Lagrangian system 
produces an alternative Lagrangian. The appearance of a Lagrangian L’ in the present 
context of course is rather surprising. Note that a different expression for L’, obtained 
from ( 16) through some elementary manipulations, is 

L‘= 9 r i y S ( 4 ) .  (18) 
If the pseudo-symmetry Y of proposition 1 in addition happens to be of Noether type, 
we have L f Y ( S ( 4 ) )  = df for some function f, from which it follows that S(df) = 
( S  0 ~’,,S)(C$). It is easy to see, for example in coordinates, that S 0 2,s = 0 when Y 
projects onto a vector field on M. There results that S(df) = 0, which means that f is 
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a function on the base manifold M. Moreover, we then know that T(F)=O with 
F =f- i y S ( 4 ) .  Consequently, L'= Y r i y S ( 4 )  = r( F )  = j  So, in agreement with, and 
as a generalisation of results from, the Lagrangian theory, proposition 1 yields a trivial 
result in the Noether case (the Lagrangian L' just being a total time derivative of a 
function of the q i  alone). 

Let us now return to the general relation (17), which is valid for any pseudo- 
symmetry Y. The left-hand side can be rewritten in the following form: 

( 3 r S o  R Y ) ( + )  = r r ( R y ( + ) ) -  S(Yr(Ry(4))) 

= R Y ( + ) - - S ( W R Y ( d J ) ) )  

since R y ( 4 )  belongs to X,*. As a result, if we repeat the calculation performed for 
the case RY = 0, i.e. if we take the Lie derivative of (17) with respect to r, we will 
reach the following more general conclusion. 

Proposition 2. If Y is a pseudo-symmetry with respect to 4, then the 1-form dL'- 
Y r ( R y ( 4 ) )  belongs to X:, where L'=3&S(+) .  

Pseudo-symmetries which are not of point type will generally not lead to a Lagrangian. 
Yet, it appears from the above result that, under certain circumstances, a Lagrangian 
L' can be obtained. Indeed, we know that R Y ( + )  E X: and if it happens also that 
L f r ( R y ( 4 ) )  E X,* (the meaning of which will become clear in the next section), proposi- 
tion 2 tells us that dL'E XF. It is this broader possibility which means that we can in 
fact make a converse statement. The next result generalises the property that two 
equivalent Lagrangians define a dynamical symmetry of the given system, the local 
determination of which is a matter of finding a particular solution of a single partial 
differential equation (Sarlet 1983). 

Proposition 3. Let 4 E X: be non-degenerate and assume further that we have at our 
disposal a Lagrangian L' for the second-order equation field r (i.e. dL'E XF). Then 
there exists a related pseudo-symmetry Y with respect to 4, which is locally determined 
by a particular solution F of the equation r( F) = L'. Y is unique to within an arbitrary 
pseudo-symmetry of Noether type. 

Pro05 Consider the 1-form d F  - O r , ,  where er, = S(dL') is the Cartan 1-form associated 
to L'. If F solves the equation r( F) = L' (possibly only locally), then T r ( d F  - eLr) = 0. 
Consequently the relation 

i y  dS( 4) = d F  - Or,  (19) 

which, by the fact that dS(+)  is symplectic, uniquely defines a vector field Y, yields 
a pseudo-symmetry in view of (15). If F' were a second solution of I?( F )  = L', the 
difference F - F' would be a first integral of and as such give rise to a pseudo-symmetry 
of Noether type. 

A number of results from this section will make their appearance again in the next 
section, regarded, however, from quite a different angle. 
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4. Adjoint symmetries 

Symmetries of vector fields are, roughly speaking, invariant vector fields. In defining 
the notion of an adjoint symmetry it is natural to expect that an invariant 1-form will 
be involved. As mentioned in the introduction, however, when dealing with second- 
order equations, there are good reasons for reserving the label 'adjoint symmetry' not 
for an invariant 1-form as such, but for a related 1-form. We will first present our 
definition and an alternative characterisation of adjoint symmetries and comment on 
the motivation for doing so afterwards. 

Definition. An adjoint symmetry of a second-order equation field r is a 1-form a on 
TM with the property that p = 2 r S ( a )  is invariant, i.e. 9 r P  = 0. 

Proposition 4. A 1-form a is an adjoint symmetry of if and only if a E X,* and Ltra E X,*. 

Pro05 If a is an adjoint symmetry, we have (using (4)) 

a =ZrS(P) = Tr(P) 

since 9 r p  = 0. This means that T r ( a )  = a or a E X;". Furthermore, we can write 

p = 2 r S ( a ) =  vr(a)-S(Ltra) 

and this implies 

0 = Ltrp = L?ra - ~ r (  2 r a )  

i.e. 9 r B  E X;. The converse is obvious from the same calculations. 

Locally, with a r of the form (l) ,  the condition that a be an adjoint symmetry is that 
it first of all be of the form (7),  as an element of X,*, and that the coefficients aj in 
(7) satisfy the equations 

These are second-order partial differential equations for the n functions aj, but they 
bear a close resemblance to the ordinary second-order differential equations which are 
known as the adjoint equations of the linear variational equations of q i  = Ai(q,  4 ) .  For 
a detailed discussion of such matters we can refer, for example, to Cantrijn et al (1987). 
Here, we content ourselves with observing that the appearance of equations (20) is 
sufficient for a justification of the term adjoint symmetry, as introduced above. 

We now come to a characterisation of an interesting subclass of adjoint symmetries, 
which will help in understanding from a different angle all results on pseudo-symmetries 
of the previous section (and of course many known results for Lagrangian systems 
which they cover). The subclass in question concerns those adjoint symmetries which 
are projections under T r  of an exact 1-form. 

Proposition 5. Let a be an adjoint symmetry of r which is of the form a = Tr(dF) for 
some function F :  then dT(F)  E !E? (i.e. either F provides a first integral or T ( F )  is a 
possibly degenerate Lagrangian for r). Conversely, if dT( F )  E XF for some function 
F, then a = r r ( d F )  is an adjoint symmetry of r. 
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Proof. We have 

cz = v r ( d F ) = Z r S ( d F ) +  S(dI'(F)). 

Using properties (3) and (4), this implies 

Y r S ( 0 )  =dF-S(dT(F)) .  

This relation makes it clear that -Yr( -YrS(n) )  = 0 if and only if v,(dT(F)) = d r ( F ) ,  
from which the results now readily follow. 

The theory on pseudo-symmetries of the previous section in fact provides a nice 
application of proposition 5 .  To see this, we first make some more general comments. 
We know, from the very definition, that every element of X: is the Lie derivative with 
respect to I' of a semi-basic 1-form. It is, however, not excluded that such an element 
might further be written in a form LfrU with a U which is not semi-basic. If now 
Y r U  E XF, we have a 1-form U which satisfies half of the requirements (see proposition 
4) for an adjoint symmetry and we may wonder whether we can construct an adjoint 
symmetry U' out of U by, for example, projecting U onto X:. Putting U' = v y (  a) E XF, 
the difference U - U' is semi-basic (it is obtained by acting on U with the Euler-Lagrange 
operator) and so Z r ( U - U ' ) E X ? .  Since by assumption ZraEX;-* also, the same 
property holds for U' ,  meaning that U' is an adjoint symmetry. For this construction 
to make sense, however, it is essential that the original 1-form a is not semi-basic, for 
otherwise U' = vr(a) E 0. 

To come back to the previous section, assume we have a 1-form ~ E X F  (non- 
degenerate) and let Y for the time being be any vector field on TM. One can show 
then that p = Y y ( S ( + ) )  - R Y ( 4 )  is semi-basic. Therefore, Yrp E XF. The special 
interest of Y being a pseudo-symmetry (with respect to 4)  is that i y  d S ( 4 )  is an 
invariant 1-form. So, by subtracting it from p, we still have a 1-form U whose Lie 
derivative with respect to r belongs to X?. This time, however, U is no longer semi-basic 
so that the above construction applies and tells us that 

is an adjoint symmetry of I'. Knowing proposition 5 ,  we can now easily recover the 
results of propositions 1 and 2. Indeed, if the pseudo-symmetry Y is of point type, 
i.e. RY = 0 (see proposition l ) ,  or more generally if R y ( 4 )  itself happens to be an 
adjoint symmetry (see the discussion following proposition 2), then it follows from 
(21) and proposition 5 that L' = r( iyS( 4)) is a Lagrangian for the second-order equation 
field r. The other particular case of interest, namely the case of pseudo-symmetries 
of Noether type, also fits well into the framework of proposition 5 .  One can easily 
verify, indeed, that for a pseudo-symmetry of Noether type, the associated adjoint 
symmetry U' of (21) can be written in the form a'= -vr(dF),  where F =f-( Y, S(4)) 
is the corresponding first integral discussed in the previous section. 

5. Gordon's version of Noether's theorem 

Noether's theorem, in practically all versions one can find in the literature (including 
the original one by Noether (1918)), deals with a relationship between symmetry vector 
fields of a Lagrangian system and first integrals. Gordon's recent version of Noether's 
theorem (Gordon 1986) at first glance may create the impression of having nothing to 
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do with Noether's theorem whatsoever. The reason is that Gordon essentially does 
not mention symmetry vector fields at all. Instead, he relates first integrals to certain 
solutions of the 'adjoint equations', which for the type of second-order systems (1) we 
are presently discussing, are precisely the partial differential equations (20). The theory 
developed in the previous sections allows us to clarify the contents of Gordon's 
statement from a geometrical point of view and to add some interesting features to it. 
For the sake of comparison, we will refer here to the notation of Gordon (1986) and 
point out what they stand for in our terminology. For completeness, we should mention 
that the statement we are quoting here is actually a particular case of a more general 
formulation which is valid for systems of partial differential equations also (Gordon 
1984). According to Gordon, Noether's theorem takes the following appearance: 

D , Q ~ A f J D , ~ [ a ] = A ~ [ u ] ~ J f * [ A ] = O  (22) 
where the first arrow can only be extended to an arrow in both directions if a certain 
integrability condition is satisfied. The left-hand side of (22) becomes r( Q )  = 0, i.e. 
it merely expresses that Q is a first integral. The reason why Gordon does not write 
D,Q = 0 is simply that his equation of motion is represented by f ( x ,  x, x, f )  = 0, while 
we write the given second-order equations in normal form. Note in passing that Gordon 
discusses a single second-order equation (possibly time dependent), while we deal 
with a system of n autonomous second-order equations, but these differences appear 
to be irrelevant. It suffices to think of the f in (22) as representing a vector with 
components f' = q'  - A ' (  q, q )  (with some additional adaptations which will be men- 
tioned if need be). The right-hand side of (22) represents the adjoint equations. In 
ether words, with A being thought of as a vector with components a], the relation 
f * [ A ]  = 0 must be interpreted as standing exactly for equation (20). Thus, a solution 
of that equation for us represents a certain 1-form a = aJ duJ + T ( a J )  dqJ E 2:. 

The middle part of (22) is difficult to translate in direct terms. In Gordon's 
terminology it stands for an 'infinitesimal invariance'. When d[ a ]  is generated out 
of the function Q, it takes the form (see Gordon's equation (2.5), here slightly adapted 
to our notation) 

&7] = (aQ/aqi)ai+ (ag/aui)r(ai). (23) 
This sufficiently illustrates that 0, in geometrical terms, must be thought of as a 1-form. 
In (23) it is actually the 1-form dQ, which is paired with the vector field u ' ( d / d q ' ) +  
r (cr ' )a /au'  E X,. When, on the other hand, b[a] is constructed out of a solution of 
the adjoint equations, it takes the form (see Gordon's equation (2.6) with appropriate 
adaptations) 

In that case, therefore, is the 1-form 

which is exactly . Y r S ( a ) .  The middle part of (22), therefore, cannot represent anything 
but the invariance of that 1-form and so the meaning of the double arrow in (22) is 
obvious in terms of our notion of adjoint symmetry. The integrability condition which 
Gordon imposes (his equation (2.7)) is just the identification of (24) with (23). In 
other words, it represents the requirement that 2rS( a) be an exact form. The content 
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of ( 2 2 )  now is perfectly clear and is incorporated in our results of the previous section. 
Indeed, (22) says: 

(i)  if F is a first integral of r, then d F  is an invariant l-form, which can be written 
in the form L!‘rS(a), where a = r r ( d F )  is an adjoint symmetry; 

(ii) conversely, if a is an adjoint symmetry, then L!’e,S(a) is an invariant l-form. 
If, in addition, this 1-form satisfies the ‘integrability condition’ 2 r S (  a) = dF, we have 
dT(F) = 0 and therefore T ( F )  = c (a constant). That we do not immediately find a 
first integral in this case is a consequence of our restriction to an autonomous theory 
(obviously, F - ct is a first integral). 

With regard to (ii) it is interesting to note that we have in fact identified (in 
proposition 5 )  some kind of weaker ‘integrability condition’ that can be imposed on 
an adjoint symmetry, namely, instead of imposing L!’rS(a) = d F  in which case a = 
r r ( d F ) ,  we could impose only the latter. The function F will then not necessarily 
give rise to a first integral, but T ( F )  will be a Lagrangian. All such aspects will be 
illustrated for a simple example in the next section. 

In conclusion, Gordon’s statement should really not be called Noether’s theorem; 
it concerns interesting properties of adjoint symmetries of general second-order 
equations. However, it does become a perfectly valid dual description of Noether’s 
theorem whenever there is a Lagrangian L available, the dualism being provided by 
the isomorphism between vector fields and l-forms defined by the symplectic form 
deL. Even more generally, it becomes a dual description of our theory on pseudo- 
symmetries whenever we know a non-degenerate 4 E XF, the dualism this time being 
generated by the symplectic form dS(4) .  

The above discussion is suggestive for introducing a geometrical notion of ‘self- 
adjointness’ of a second-order equation field r. In the analytical approach a second- 
order system is said to be self-adjoint if its linear variational equations coincide with 
their adjoints (see, e.g., Santilli 1978). It is then shown that self-adjointness is necessary 
and sufficient for the system to be Lagrangian. In our present context, symmetries and 
adjoint symmetries are geometrical quantities of a different species and cannot possibly 
be said to ‘coincide’. Inspired by what preceeds, however, we are led to introducing 
the following concept. 

Definition. A second-order equation field r is said to be self-adjoint if there exists a 
non-degenerate C$ E XF, such that the isomorphism y : X( T M )  + X*( T M ) ,  defined by 

y :  YHL!’pS(iy d S ( 4 ) )  ( 2 5 )  
provides a bijection between symmetries of r and adjoint symmetries. 

As an intermediate remark, elements of X? need not exist globally and r need not 
have any global symmetries Y. The content of the above definition and its interpretation 
below is therefore in the first place a local one and the same is true for many other 
results in this paper. 

Proposition 6. r is self-adjoint if and only if r is locally Lagrangian. 

Prooj 
(i)  If we set a = y (  Y )  and P = Y.rS(a), we have i y  d S ( 4 )  = p, from which it follows 

that 

9 r P  = i y x r  d S ( 4 ) +  i[r,v] d S ( 4 )  
= i y  d 4  + i[r ,v] dS(C$). 
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Now, a is an adjoint symmetry if and only if TrP =0, while Y is a symmetry if and 
only if kr ,v l  dS(  4)  = 0. We thus reach the conclusion that r is self-adjoint if and only 
if there exists a non-degenerate 4 E JF such that i y  d 4  = 0 for all symmetries Y of r. 

(ii) We next prove: if for a 2-form w on TM we have that i+ = 0 for all symmetries 
Y of a given second-order equation field r, then w = 0. Let (q, U )  be a regular point 
of r. Then, in the neighbourhood of this point there .exists a coordinate transformation 
( s i ,  U ' ) H ( X  ) I r k r 2 n r  such that r in these coordinates simply becomes a/dx'. But then 
all basis vector fields a/axk are symmetries of r in these coordinates and therefore w 
must be zero in the neighbourhood under consideration. Singular points of r all lie 
in the zero section of TM and therefore can be approached arbitrarily close by regular 
points. It follows by continuity that w = 0 everywhere. 

From (i)  and (ii) we conclude that r is self-adjoint if and only if there exists a 
non-degenerate C#J E X,*, such that d 4  = 0, which means that r is locally Lagrangian. 

k 

The above formulation of self-adjointness appears to have some advantages over the 
classical analytical one. Indeed, classically, when one states that the variational 
equations and their adjoints coincide, it follows that the given system is a set of 
Euler-Lagrange equations as it stands. We may be talking, for example, of a system 
written in the form a,(q'-A') = O  and self-adjointness then is a property related to 
the pre-assigned matrix ( a v ) .  In other words, the formalism does not account for the 
possibility that a system which fails to be self-adjoint in the given form may still be 
derivable from a Lagrangian if one passes to an equivalent description, i.e. one with 
a different (regular) multiplier matrix ( a v ) .  Our definition of self-adjointness relates 
to the normal form of the equations and therefore does not start from a preassigned 
matrix ( a , ) .  We have shown that if r happens to be self-adjoint then it can be derived, 
at least locally, from a Lagrangian L, whose Hessian will constitute the matrix ( a , )  
for which the standard definition of self-adjointness works. Our formalism covers in 
itself the possibility that there may be more than one 4 fitting the description, leading 
therefore to different Lagrangians for the same system. 

6. An example 

We take a simple example of a single second-order equation, which was also considered 
by Gordon and thus will allow us to illustrate various points made in 9 5 .  

Consider the equation 

(26) q = -qq2 

which corresponds to the second-order equation field r = u(a/aq) - q u 2 ( a / a u ) .  Its 
adjoint linear equation (20) becomes 

rr(A)-2qur(A)+(2q2- i ) v 2 ~  =o. (27)  

Gordon found the particular solution A = U-' of (27), leading to the first integral 
G =iq2+ln  U. As discussed in the previous section, we do not regard the process 
involved in obtaining this G as Noether's theorem. Since at the moment we do not 
have a Lagrangian for (26) at our disposal, closer to Noether's theorem would in fact 
be a relationship between G and a pseudo-symmetry Y with respect to some 4 E XT 
(see 5 3). To illustrate this point, let us regard the right-hand side of (26) as some 
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non-conservative force Q = -qu2 ,  interacting with the free particle Lagrangian L = 4u2. 
In other words, we are focusing on the following 1-form in X ; :  

4 = dL+ Q dq = v dv - 40’ dq. (28) 

Then d S ( 4 )  = du A dq is clearly a symplectic form and the relation 

iy d S ( 4 )  = d G  

associates to the first integral G the pseudo-symmetry of Noether type: 

Y = - v - ’ ( a / a q )  + q(a /au) .  

Let us next seek another particular solution of the adjoint equation by requiring that 
A be a function of q only. Equation (27) then reduces to 

A”-3qA‘+(2q2- 1 ) A  = O  

which can be rewritten in the form 

(d/ dq)( A ’ - q A  ) - 2q ( A  ’ - qA ) = 0 

and easily integrates to 

A(4) = c24q)  + c,u(q) 1‘ 4 q ‘ )  dq’ 

where u(q) = exp(iq2) and c1, c2 are arbitrary constants. The adjoint symmetry deter- 
mined by (29) is the 1-form 

a =A(q)dv+A‘(q)udq 

and the associated invariant 1-form LfrS(a)  is 

ZrS(a)=A(q) d ~ + ( 2 q ~ A  - A ’ v )  dq. 

Requiring this to be exact, ZrS( a )  = d F  say (Gordon’s integrability condition), leads 
to the restriction A ‘ - q A  = O  or c1 = O .  We are left with the solution A = u(q)  (choose 
c2 = 1) and the function F is found to be F = u(q)v, which is another first integral (not 
independent of the first one, since G = In F ) .  

At this point, it is of interest to impose on the adjoint symmetry a the weaker 
‘integrability condition’ cy = q-(dF)  for some function F. In this one degree of freedom 
case, this is in fact no restriction at all. It merely requires that A ( q )  = a F / a v ,  which 
is trivially satisfied by F = A ( q ) u .  Computing r( F )  we find 

T ( F )  = c , v 2  exp(q2) 

which, according to proposition 5, must be a Lagrangian for (26) and indeed is. Let 
us finally illustrate proposition 3. Choosing for convenience cI =:, we have the 
Lagrangian L’ =;U’ exp(q2). The invariant 1-form is d F  - O r ,  and the relation (19) 
uniquely determines a pseudo-symmetry Y with respect to 4, which is found to be 

and is evidently a pseudo-symmetry of point type. 
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